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Abstract

Two methods that exploit the availability of sensitivity derivatives are successfully employed to predict
uncertainty propagation through Computational Fluid Dynamics (CFD) code for an inviscid airfoil
problem. An approximate statistical second-moment method and a Sensitivity Derivative Enhanced Monte
Carlo (SDEMC) method are successfully demonstrated on a two-dimensional model problem. First- and
second-order sensitivity derivatives of code output with respect to code input are obtained through an
efficient incremental iterative approach. Given uncertainties in statistically independent, random, normally
distributed flow parameters (input variables); these sensitivity derivatives enable one to formulate first- and
second-order Taylor Series approximations for the mean and variance of CFD output quantities.
Additionally, incorporation of the first-order sensitivity derivatives into the data reduction phase of a
conventional Monte Carlo (MC) simulation allows for improved accuracy in determining the first moment
of the CFD output. Both methods are compared to results generated using a conventional MC method.
The methods that exploit the availability of sensitivity derivatives are found to be valid when considering
small deviations from input mean values.

Introduction

In Computational Fluid Dynamics (CFD), the computation of sensitivity derivatives (SD)
of CFD code output, with respect to code input parameters, affords information which
can be used to estimate uncertainty propagation; that is, the extent to which the function
output is affected by uncertainties in input parameters. In [1] it is shown that a statistical
First-Order Second Moment (FOSM) method and Automatic Differentiation (AD) can be
used to efficiently propagate input uncertainties through finite element analyses to
approximate output uncertainty. In the present study, this FOSM method, as well as a
Second-Order Second Moment (SOSM) method is demonstrated. The results of the
FOSM and SOSM approximate methods are compared to results obtained using
traditional MC techniques. Additionally, the availability of CFD SD may be incorporated
into variance reduction schemes for traditional MC simulations. The strategy of
exploiting the availability of SD for improved sampling was proposed in [2]. This
proposed methodology for variance reduction, Sensitivity Derivative-Enhanced Sampling
(SDES), is demonstrated herein on a CFD code.
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For the present study, we assume that the input uncertainty quantification is given by
independent normally distributed random variables. Although the strategy presented
herein is also applicable to correlated and/or non-normally distributed variables, the
analysis and resulting equations become more complex. We also assume that sources of
uncertainty are exclusively those due to code input parameters, i.e., due to sources
external to the CFD code simulation. We address the assessment of everyday operational
fluctuations on performance loss, not catastrophe. Consequently, we are most concerned
with behavior due to probable fluctuations, i.e., near the mean of probability density
function (pdf).

Uncertainty Propagation

In the present study the input random variables are designated as b={by,...,b,}, with
mean values, b=1{b,...,b,}, and standard deviations o, ={o,, ....c,,}. The CFD output
function, F= F(b), is a function of the input random variables, b.

Traditional Monte Carlo Method
The most straightforward way to compute the expected value of F(b), designated as

F (b), and the variance, designated as 0F2 is to employ a traditional MC analysis and
calculate the mean and variance as

>(F(b,) - Fb))

Fb) = SFb)  oi=F (1)

The problem with a traditional MC simulation is that in order to get an accurate
prediction of the output mean and variance one may have to perform thousands of runs
which is often not feasible with high fidelity CFD codes.

Sensitivity Derivative Enhanced Monte Carlo Method (SDEMC)

One naturally looks for ways to improve the convergence of the traditional MC method.
In [2] the availability of the SD is exploited to achieve variance reduction via SDES
techniques. SDES applied to a traditional MC is termed herein as the Sensitivity
Derivative Enhanced Monte Carlo (SDEMC) method. The SDEMC method employs the
calculation of a first-order Taylor series approximation, F;(b) expanded about the mean

values of the input parameters b as
[— n 8F —
F (b)=F(b)+ ;E(bi -b,) (2).

Further analysis (shown in [2]) suggests that by incorporating knowledge of the SD
evaluated at the input parameter mean values, one can approximate F (b) by applying a
MC simulation to F(b). The resulting SDEMC approximation for the mean of the output
function, F is given as

1 » N OF

F(b) ~ F(b) + NZ} ,Zzla_bi(bi’j -b) ()
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Approximate Statistical Moment Method

The approximate statistical moments are calculated for the first moment (expected value)
and second moment (variance) applying standard procedures to either first- or second-
order Taylor series approximations of the output function of interest where derivatives
are evaluated at the mean values, b. The Taylor series approximations are

FO:  F(b)=F(b)+ Z(;%F'(bi ~b) (4)
=1 i

1 33 O’F
2;1 118b3b

so:  F(b)= F(b)+2—(b ~b)+ (b, ~b,)(b,~b,) (5)

For normally distributed input variables, one then obtains the following approximations
for the mean and variance of the output function, F:

FO: F=F(b) 0F2=i(a—FGbij (6)
so: F = F(b)+ ZG_Fsz oF2=i{8—Fcb‘] +li i[a—FGb,GbJ] (7)

where derivatives are evaluated at the mean values, b. Note in Eq. (7) that the second-
order mean output, F, is not at the mean values of input b, i.e., F#F(b). Equations (6)
represent a FO method and Eq. (7) a SO method for examining uncertainty propagation.
The methods are straightforward with the difficulty largely lying in computation of the
SD. The very efficient method used here to obtain such derivatives is presented in [3.]

Application to 2-D Euler CFD

An initial investigation of uncertainty propagation in CFD using both a first and second-
order approximate statistical moment method was done for several quasi 1-D problems
using Euler Code [4]. This methodology as well as the SDEMC methodology is
demonstrated herein for a 2-D inviscid steady subsonic flow over a NACA 64A410
airfoil using an Euler code [3]. A 129 x 33 C-mesh computational grid is used. For the
current study, the airfoil angle of attack, o and the free-stream Mach number, Minf, will
be taken as statistically independent random variables. The CFD output is the lift
coefficient, Cl.

Traditional Monte Carlo Method

Two independent MC simulations with a sample size of N = 2500 were conducted. In
both simulations the average values of the input parameters were set at, b = {a, M inf} =
{4°,0.4}. In Simulation 1, 6 = 6= Gwminr = 0.02 while in Simulation 2 6 = 6, = Guint =
0.04. The output function mean and variance were calculated for each simulation. Each
independent MC simulation of 2500 samples was subdivided into five samples of N=500.
This division allowed for further analysis and comparison of MC techniques. For all MC
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analyses, standard statistical functions from Microsoft ® Excel 2000 were used and the
random number generator MZRAN from [5] was used.

Sensitivity Derivative Enhanced Monte Carlo Method (SDEMC)

Equation 3 was applied to each of the five sub-samples in MC Simulation 1 and in MC
Simulation 2. The first-order SD were evaluated once for each sample at the mean values
@ and Minf . The SD was incorporated in Eq (3) in order to approximate ClI.

Approximate Statistical Moment Method

First and second-order SD were evaluated at the mean values o and Minf in order to
predict Cl and c’clas given in (6) and (7). Note that the predictions of Cl and ¢’ are
direct calculations and require only one run of the CFD analysis and SD analysis codes.

Sample Results & Discussion

Predictions of Cl generated via SDEMC methods, as well as Cl and o°¢; generated via
approximate statistical moment methods are compared to traditional MC techniques.
Before making assessments it is useful to consider the degree of non-linearity in the CFD
output function of interest. If the CFD output function, Cl, is quasi-linear with respect to
the input variables of interest, one can expect first-order approximations to be reasonably
good; that is, the FO moments given by Eq. (6) should match well with the moments
produced by a MC simulation. For a nonlinear function, one would expect that
uncertainty analyses which include SO terms would yield a better prediction of the
statistical moments. In the present analysis one sees nonlinearities in the output function
ClI and accordingly second-order approximations should be the better estimates of the
moments. When one deviates far from the nominal mean values, the Taylor series
approximations are less accurate and the statistical approximations will tend to loose
accuracy. It is also worth noting that although the traditional MC analysis is our basis for
comparison in the present study, results generated via traditional MC contain error
proportional to 6, / IN (approx 0.0236% for MC Sim 1 and 0.0477% for MC Sim 2.)

Uncertainty Propagation

As shown in Figs. 1 and 2, mean value approximations were compared to the mean
values generated using traditional MC simulations with N=2500. Results from five
simulations of traditional MC with N=500, five simulations of SDEMC with N=500, a
FOFM approximation and a SOFM approximation are shown. For small input deviations
(Fig. 1), the inclusion of SD in the MC simulation greatly improves the accuracy of the
simulation while at higher input deviations (Fig.2), the inclusion of SD in the
comparisons provides no improvement in the accuracy of the simulation. Note that for
small input deviations, an order of magnitude improvement is seen SDEMC prediction of
the output mean when compared to traditional MC methods. This order of magnitude
improvement in accuracy was suggested in [2] and is validated in the present study. Also
note that at small input deviations, the SO mean is a very efficient and accurate
approximation. Although at high standard deviations inclusion of SD via SDEMC,
FOFM, or SOFM methods offers little, if any improvement in accuracy, there are
however significant savings in computational resources in each of these methods.
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Accurate prediction of output variance or standard deviation is more difficult with
percent differences ranging up to 8% (see Figs 3 and 4). In the present study inclusion of
SD in SDEMC prediction of variance was not considered. For the second-order variance
predictions, no increased accuracy is generated via inclusion of SO terms. However, note
that at large input standard deviations, it is more difficult to accurately approximate the
output variance as shown in the scaling of Figs 3 and 4.

Timing Considerations

A stochastic analysis with a traditional MC simulation of N runs can be computationally
expensive especially when considering CFD codes. In the present study (with two
random input variables and one CFD output function), the approximate statistical
moment methods are very efficient; the FO method requires approximately the
computational equivalent of two analysis runs while the SO method requires
approximately the computational equivalent of four analysis runs. Note that the timing
associated with each of the FO and SO methods is due to the calculation of first- and
second-order SD. With the incremental iterative method used herein, the computational
expense is dependent on the number of input variables and output functions. A complete
discussion of the dependency is found in [3].

Probability Density Function Approximations

Approximating a mean and standard deviation of the CFD output function and assuming
a normal distribution, one may then construct a pdf to approximate the behavior of the
non-deterministic output function. This approximation is compared to the pdf histogram
generated from a traditional MC simulation in Fig 5 and 6. The bars depict the actual
MC simulation histogram, and the solid curve represents the normal distribution at the
MC mean value and standard deviation. The MC simulation size of 2500 is not sufficient
to obtain a smooth pdf. It is apparent however that for small standard deviations of the
input parameters, the normal pdf approximates the actual simulation in regions about the
mean but tend to break down in predicting the tails of the distribution. This is significant,
for if one is primarily interested in reliable failure predictions, as for structural design,
this prediction may not be good enough. It is felt, however, that in aerodynamic
performance analysis using CFD, where robustness about the mean is desired, these
approximations may suffice.

Concluding Remarks and Challenges

The present results represent an implementation of the SDEMC method and the
approximate statistical moment method for uncertainty propagation for 2-D Euler CFD
code. Efficient calculation of both first- and second-order sensitivity derivatives was
employed and the validity of the approximations was assessed by comparison with
statistical moments generated through MC simulations. Collectively, these results
demonstrate the possibility for an approach to treat input parameter uncertainty and its
propagation through complex CFD analysis without large numbers of samples. The
methods are demonstrated on a relatively simple CFD code and problem.
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